
MATH2050C Assignment 3

Section 2.2 no. 10a, 11, 14b, 15d, 18a. Section 3.1 no. 5cd, 6a, 12, 14, 16, 17.

Deadline: Jan 28, 2025.

Hand in: Section 2.2 no. 10a, 15d. Section 3.1 no. 5c, 14. Suppl. Problems no. 6, 7.

Supplementary Problems

Problems 1-3 are for mathematical induction.

1. Prove that 52n − 1 can be divided by 8 for all n ∈ N.

2. Prove the generalized triangle inequality: For a1, a2, · · · , an ∈ R,

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an| .

3. Prove the GM-AM Inequality: For a1, a2, · · · , an ≥ 0,

(a1a2 · · · an)1/n ≤ 1

n
(a1 + a2 + · · ·+ an) , n ≥ 1,

and equality in the inequality holds iff all aj ’s are equal. Hint: Show it holds for n =
2k, k ≥ 1, first.

4. Show that for each positive number a and n ≥ 2, there is a unique positive number b
satisfying bn = a. Suggestion: Use Binomial Theorem.

5. For a > 0 and m,n ∈ N, define am/n = (a1/n)m and a−m/n = a−(m/n). Show that (a)
am/n = (am)1/n and (b) ar+t = arat, r, t ∈ Q.

6. Find the limit of {xn}, xn = 7n2+3
n2−n−5 .

7. Show that limn→∞ n1/n = 1. Hint: Use Binomial Theorem.

See next page on limits of sequences.
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Limits of Sequences

Mathematical induction is one of the most frequently used tools in analysis. It is apparently
valid and, if you like, can be deduced from the more apparent fact, namely the Well-Ordering
Property. Let us recall

The Well-Ordering Property. Every nonempty subset E of N has a least element in E.

This property is an axiom in nature. We do not have to prove it.

Principle of Mathematical induction. Let E be a subset of N satisfying (a) 1 ∈ N, and (b)
n + 1 ∈ E whenever n ∈ E. Then E = N.

Proof Assume on the contrary E is not N. We apply the Well-Ordering Property to F, the
complement of E, to find a least element m ∈ F , that is, m ≤ n for all n ∈ F . Since m is the
least element and m > 1 according to (a), m− 1 is a natural number belonging to E. However,
by (b) m = (m− 1) + 1 ∈ F , contradiction holds.

Now I give two examples of mathematical induction. These examples are important for later
developments.

Bernoulli’s Inequality. For x > −1,

(1 + x)n ≥ 1 + nx .

Proof. Clearly the inequality holds when n = 1. Now assume it holds for n. Multiplying
(1 + x)n ≥ 1 + nx by 1 + x > 0, we have

(1 + x)n+1 = (1 + x)(1 + x)n ≥ (1 + x)(1 + nx) = 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x ,

hence the inequality also holds at n + 1. BY MI, it holds for all n.

Binomial theorem. For real a, b,

(a + b)n =
n∑

k=0

Cn
k a

n−kbk , n ≥ 1 .

Here Cn
k = n!

k!(n−k)! and 0! = 1.
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Proof. The theorem is obvious when n = 1. Now assume n is true. Then

(a + b)n+1 = (a + b)(a + b)n

= (a + b)

n∑
k=0

Cn
k a

n−kbk by induction hypothesis

=

n∑
k=0

Cn
k a

n−k+1bk +

n∑
k=0

Cn
k a

n−kbk+1

=

n∑
k=1

(Cn
k + Cn

k−1)a
n−k+1bk + an+1 + bn+1

=

n∑
k=1

Cn+1
k an−k+1bk + an+1 + bn+1

=
n+1∑
k=0

Cn+1
k an+1−k

k bk .

So it holds also at n + 1. By MI, the formula holds for all n ∈ N.

Now we turn to sequences.

A sequence is a map from N to R. However, we usually use notations like {xn}, {ak}, {bm} to
denote sequences. For instance, the sequence given by f(n) = 1/n is denoted by {1/n}. Given
a sequence {xn}, the number x is the limit of {xn} if for every ε > 0, there is some n0 such
that |xn − x| < ε, for all n ≥ n0. Write it as limn→∞ xn = x or xn → x as n→∞. A sequence
is convergent if its limit exists. It is divergent if it does not have a limit. For instance, the
sequences {n} and 1 + (−1)k} are divergent.

Example 3.1 Show that limn→∞ 1/n = x. By the Archimedian property, for given ε > 0,
there is some n0 such that 0 < 1/n0 < ε. (Specifically we can choose n0 to be any natural
number greater than or equal to [1/ε] + 1 where [a] means the integral part of a.) Now we have
|1/n− 0| = 1/n ≤ 1/n0 < ε for all n ≥ n0.

By the same argument taking n0 ≥ [1/ε1/a]+1, one can show that for a = p/q > 0, limn→∞ 1/na =
0.

Proposition 3.1 Whenever there is some {cn}, cn → 0 as n → ∞ satisfying |xn − x| ≤ cn,
limn→∞ xn = x.

Proof For ε > 0, there is some n0 such that |cn| = cn < ε for all n ≥ n0. But then we also
have |xx − x| ≤ cn < ε, done.

Example 3.2 Find the limit of {
√
n + 1−

√
n}. We have

√
n + 1−

√
n = 1/(

√
n + 1 +

√
n) < 1/n1/2 .

Taking cn = 1/n1/2, by Proposition 3.1 limn→∞(n + 1)1/2 − n1/2 = 0 .

Example 3.3 Show that for b ∈ (0, 1), limn→∞ bn = 0. Well, writing b = 1/(1 + c), c > 0, by

Bernoulli’s inequality (1+c)n ≥ 1+cn. Therefore, |bn−0| = bn = 1/(1+c)n ≤ 1/(1+nc) < 1/c
n .

By Proposition 3.1, bn → 0 as n→∞.
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Example 3.4 Show that for c > 0, limn→∞ c1/n = 1. First assume c > 1. Write c1/n =
1 + dn, dn > 0. By Bernoulli’s inequality, (1 + dn)n ≥ 1 + ndn. It follows that c = (1 +
dn)n ≥ 1 + ndn > ndn, that is, 0 < dn < c/n so dn → 0 as n → ∞. By Proposition 3.1,
|c1/n − 1| = c1/n − 1 = dn < c/n implies limn→∞ c1/n = 1. When c ∈ (0, 1], simply observe that
1/c > 1 and limn→∞ c1/n = 1/ limn→∞ c−1/n = 1. (We will discuss this more in the next section
on the limit theorems.)


